If it's not what You are looking for type in the equation solver your own equation and let us solve it.
635x+x^2-42000=0
a = 1; b = 635; c = -42000;
Δ = b2-4ac
Δ = 6352-4·1·(-42000)
Δ = 571225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{571225}=\sqrt{25*22849}=\sqrt{25}*\sqrt{22849}=5\sqrt{22849}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(635)-5\sqrt{22849}}{2*1}=\frac{-635-5\sqrt{22849}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(635)+5\sqrt{22849}}{2*1}=\frac{-635+5\sqrt{22849}}{2} $
| 40x+16=26 | | 2x+(x-6)=54 | | 6x-4(-x-16)=-56 | | R(-1)=2t-5 | | 100=4(1+6n) | | -6w-19=21-10w | | 1.86/r=6.2 | | 125m-100m+43,425=45,225-200 | | G(0)=2t-5 | | 8x+2(1-5x)=-8+8x | | 2/3x+1/6x-4=1 | | G(3)=2t-5 | | -4r=2r-24 | | 5n^2+13n=0 | | 2x+1-3=-2x-5 | | 4x^2-6x-2=x-7 | | (2/3x+10)2+(1/3x+5)2)=90 | | G(2)=2t-5 | | 7x=15-30x2 | | 5+7y=5(1+6y) | | 8x-32/3=4x | | 29=4h-6-9h-5 | | -61-2y=20+7y | | 35x÷35=20÷35 | | -80=-16+8x | | 2x+15=1x-15 | | 3p+4p+3=(4p-2) | | 2.89+0.25x=4.39 | | -7+n=-35 | | -20=-5(q+4)-4q | | 1.25a+10=30 | | (x-2)^2+((-2x+15)-1)^2=25 |